# Re: 6702 chip

From: Rhialto <rhialto_at_falu.nl>
Date: Fri, 11 May 2012 09:58:58 +0200
Message-ID: <20120511075857.GA7187@falu.nl>
```On Thu 10 May 2012 at 20:01:41 +0200, davee.roberts@fsmail.net wrote:
> If we can get a printout of the exact number sequence on this thread
> (and the values you poked in to obtain them) this would allow some
> degree of 'parallel processing' to the problem. Multiple hackers

I posted a list of values, but seemingly my mails were too long for the
list. I haven't seen them show up in the archives, but neither did I
receive error messages. Hopefully it is awaiting moderator approval so
they will show up eventually.

Here are a few lines from what I posted:

I wanted to note that the even values written by the dongle check
routine all are powers of 2, i.e. contain exactly 1 bit that is set.
Limiting initial research to such even values would probably be simpler.
So I ran a test program a few times, for varying even values. The even
value made no difference (at least for odd value = 1).

I put the results in 4 columns below. I leave analysis to the group for
now.

;/scratch2/tmp/eo3.prg ==0401==
100 q=61408
101 n\$="eo3
105 dimv(255)
110 e=0:o=1
115 open 8,8,8,n\$+"vl,s,w
116 print#8,"e =";e;"o =";o
120 poke q,e: poke q,o
130 v=peek(q)
140 printv;
145 print#8,v
150 v(v) = v(v)+ 1
160 n=n+1: if n < 2048 goto 120
200 for i = 0 to 255
210 if v(i) then print i;v(i): print#8,i;v(i)
220 next
230 close8

;eo3vl,s.prg       ;eo4-2-1vl,s.prg    ;eo4-4-1vl,s.prg   ;eo4-8-1vl,s.prg
e=0 o=1 SEED=214   e=2 o=1 seed=214    e=4 o=1 seed=214   e=8 o=1 seed=214
198 \$c6 %11000110  198 \$c6 %11000110   198 \$c6 %11000110  198 \$c6 %11000110
86 \$56 %01010110   86 \$56 %01010110    86 \$56 %01010110   86 \$56 %01010110
68 \$44 %01000100   68 \$44 %01000100    68 \$44 %01000100   68 \$44 %01000100
212 \$d4 %11010100  212 \$d4 %11010100   212 \$d4 %11010100  212 \$d4 %11010100
132 \$84 %10000100  132 \$84 %10000100   132 \$84 %10000100  132 \$84 %10000100
23 \$17 %00010111   23 \$17 %00010111    23 \$17 %00010111   23 \$17 %00010111
3 \$03 %00000011    3 \$03 %00000011     3 \$03 %00000011    3 \$03 %00000011
147 \$93 %10010011  147 \$93 %10010011   147 \$93 %10010011  147 \$93 %10010011
129 \$81 %10000001  129 \$81 %10000001   129 \$81 %10000001  129 \$81 %10000001
81 \$51 %01010001   81 \$51 %01010001    81 \$51 %01010001   81 \$51 %01010001
65 \$41 %01000001   65 \$41 %01000001    65 \$41 %01000001   65 \$41 %01000001
210 \$d2 %11010010  210 \$d2 %11010010   210 \$d2 %11010010  210 \$d2 %11010010
194 \$c2 %11000010  194 \$c2 %11000010   194 \$c2 %11000010  194 \$c2 %11000010
86 \$56 %01010110   86 \$56 %01010110    86 \$56 %01010110   86 \$56 %01010110
4 \$04 %00000100    4 \$04 %00000100     4 \$04 %00000100    4 \$04 %00000100
148 \$94 %10010100  148 \$94 %10010100   148 \$94 %10010100  148 \$94 %10010100
132 \$84 %10000100  132 \$84 %10000100   132 \$84 %10000100  132 \$84 %10000100
23 \$17 %00010111   23 \$17 %00010111    23 \$17 %00010111   23 \$17 %00010111
7 \$07 %00000111    7 \$07 %00000111     7 \$07 %00000111    7 \$07 %00000111
215 \$d7 %11010111  215 \$d7 %11010111   215 \$d7 %11010111  215 \$d7 %11010111
193 \$c1 %11000001  193 \$c1 %11000001   193 \$c1 %11000001  193 \$c1 %11000001
81 \$51 %01010001   81 \$51 %01010001    81 \$51 %01010001   81 \$51 %01010001
65 \$41 %01000001   65 \$41 %01000001    65 \$41 %01000001   65 \$41 %01000001

----

Here are more values, but this time I kept the even value constant and
varied the odd value. I chose the values with (at most) one other 1 bit
in the value, i.e. 1, 2+1, 4+1, 8+1, 16+1, 32+1, 64+1 and 128+1.

Sorry for the 160-char wide text, but I put the columns such that they
still look like columns in 80-char wide screens.

All sequences were produced from a reset. (Toggle the 6502/6809 switch
toward 6809 resets the disk drive, so there must be a physical reset.
The other direction, towards 6502, doesn't reset the disk).

Notice how long the sequences stay the same or very similar! "e=0 o=17"
seems special because it has identical values in sequence.

Also note on line 29 how the output values are 0, 2, 4, etc: the powers
of 2, or the odd values - 1.

Some of the columns do indeed have fairly few different values, but I
didn't put in the histograms. The last column has all values over 128
(%1000 0000).

;eo3vl,s.prg        ;eo4-0-3vl,s.prg    ;eo4-0-5vl,s.prg    ;eo4-0-9vl,s.prg    ;eo4-0-17vl,s.prg   ;eo4-0-33vl,s.prg   ;eo4-0-65vl,s.prg   ;eo4-0-129vl,s.prg
e=0 o=1 SEED=214    e=0 o=3 seed=214    e=0 o=5 seed=214    e=0 o=9 seed=214    e=0 o=17 seed=214   e=0 o=33 seed=214   e=0 o=65 seed=214   e=0 o=129 seed=214
198 \$c6 %11000110   198 \$c6 %11000110   198 \$c6 %11000110   198 \$c6 %11000110   214 \$d6 %11010110   198 \$c6 %11000110   198 \$c6 %11000110   198 \$c6 %11000110
86 \$56 %01010110    86 \$56 %01010110    86 \$56 %01010110    86 \$56 %01010110    86 \$56 %01010110    86 \$56 %01010110    86 \$56 %01010110   214 \$d6 %11010110
68 \$44 %01000100    70 \$46 %01000110    68 \$44 %01000100    68 \$44 %01000100    84 \$54 %01010100   100 \$64 %01100100    68 \$44 %01000100   196 \$c4 %11000100
212 \$d4 %11010100   214 \$d6 %11010110   212 \$d4 %11010100   212 \$d4 %11010100   212 \$d4 %11010100   244 \$f4 %11110100   212 \$d4 %11010100   212 \$d4 %11010100
132 \$84 %10000100   134 \$86 %10000110   132 \$84 %10000100   132 \$84 %10000100   148 \$94 %10010100   164 \$a4 %10100100   196 \$c4 %11000100   132 \$84 %10000100
23 \$17 %00010111    23 \$17 %00010111    23 \$17 %00010111    23 \$17 %00010111    23 \$17 %00010111    23 \$17 %00010111    87 \$57 %01010111   151 \$97 %10010111
3 \$03 %00000011     3 \$03 %00000011     7 \$07 %00000111     3 \$03 %00000011    19 \$13 %00010011     3 \$03 %00000011    67 \$43 %01000011   131 \$83 %10000011
147 \$93 %10010011   147 \$93 %10010011   151 \$97 %10010111   155 \$9b %10011011   147 \$93 %10010011   147 \$93 %10010011   211 \$d3 %11010011   147 \$93 %10010011
129 \$81 %10000001   131 \$83 %10000011   133 \$85 %10000101   137 \$89 %10001001   145 \$91 %10010001   161 \$a1 %10100001   193 \$c1 %11000001   129 \$81 %10000001
81 \$51 %01010001    83 \$53 %01010011    85 \$55 %01010101    89 \$59 %01011001    81 \$51 %01010001   113 \$71 %01110001    81 \$51 %01010001   209 \$d1 %11010001
65 \$41 %01000001    67 \$43 %01000011    69 \$45 %01000101    73 \$49 %01001001    81 \$51 %01010001    97 \$61 %01100001    65 \$41 %01000001   193 \$c1 %11000001
210 \$d2 %11010010   210 \$d2 %11010010   214 \$d6 %11010110   218 \$da %11011010   210 \$d2 %11010010   210 \$d2 %11010010   210 \$d2 %11010010   210 \$d2 %11010010
194 \$c2 %11000010   194 \$c2 %11000010   198 \$c6 %11000110   202 \$ca %11001010   210 \$d2 %11010010   194 \$c2 %11000010   194 \$c2 %11000010   194 \$c2 %11000010
86 \$56 %01010110    86 \$56 %01010110    86 \$56 %01010110    94 \$5e %01011110    86 \$56 %01010110    86 \$56 %01010110    86 \$56 %01010110   214 \$d6 %11010110
4 \$04 %00000100     6 \$06 %00000110     4 \$04 %00000100    12 \$0c %00001100    20 \$14 %00010100    36 \$24 %00100100    68 \$44 %01000100   132 \$84 %10000100
148 \$94 %10010100   150 \$96 %10010110   148 \$94 %10010100   148 \$94 %10010100   148 \$94 %10010100   180 \$b4 %10110100   212 \$d4 %11010100   148 \$94 %10010100
132 \$84 %10000100   134 \$86 %10000110   132 \$84 %10000100   132 \$84 %10000100   148 \$94 %10010100   164 \$a4 %10100100   196 \$c4 %11000100   132 \$84 %10000100
23 \$17 %00010111    23 \$17 %00010111    23 \$17 %00010111    23 \$17 %00010111    23 \$17 %00010111    23 \$17 %00010111    87 \$57 %01010111   151 \$97 %10010111
7 \$07 %00000111     7 \$07 %00000111     7 \$07 %00000111     7 \$07 %00000111    23 \$17 %00010111     7 \$07 %00000111    71 \$47 %01000111   135 \$87 %10000111
215 \$d7 %11010111   215 \$d7 %11010111   215 \$d7 %11010111   215 \$d7 %11010111   215 \$d7 %11010111   215 \$d7 %11010111   215 \$d7 %11010111   215 \$d7 %11010111
193 \$c1 %11000001   195 \$c3 %11000011   197 \$c5 %11000101   193 \$c1 %11000001   209 \$d1 %11010001   225 \$e1 %11100001   193 \$c1 %11000001   193 \$c1 %11000001
81 \$51 %01010001    83 \$53 %01010011    85 \$55 %01010101    81 \$51 %01010001    81 \$51 %01010001   113 \$71 %01110001    81 \$51 %01010001   209 \$d1 %11010001
65 \$41 %01000001    67 \$43 %01000011    69 \$45 %01000101    65 \$41 %01000001    81 \$51 %01010001    97 \$61 %01100001    65 \$41 %01000001   193 \$c1 %11000001
210 \$d2 %11010010   210 \$d2 %11010010   214 \$d6 %11010110   218 \$da %11011010   210 \$d2 %11010010   210 \$d2 %11010010   210 \$d2 %11010010   210 \$d2 %11010010
130 \$82 %10000010   130 \$82 %10000010   134 \$86 %10000110   138 \$8a %10001010   146 \$92 %10010010   130 \$82 %10000010   194 \$c2 %11000010   130 \$82 %10000010
18 \$12 %00010010    18 \$12 %00010010    22 \$16 %00010110    26 \$1a %00011010    18 \$12 %00010010    18 \$12 %00010010    82 \$52 %01010010   146 \$92 %10010010
0 \$00 %00000000     2 \$02 %00000010     4 \$04 %00000100     8 \$08 %00001000    16 \$10 %00010000    32 \$20 %00100000    64 \$40 %01000000   128 \$80 %10000000

-Olaf.
--
___ Olaf 'Rhialto' Seibert  -- There's no point being grown-up if you
\X/ rhialto/at/xs4all.nl    -- can't be childish sometimes. -The 4th Doctor

Message was sent through the cbm-hackers mailing list
```